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1. Introduction

The c = 1 string (an excellent review is ref. [1]) is a perturbatively consistent string theory

in two spacetime dimensions. One of its attractive features is that it is solvable: from

the powerful techniques of Matrix Quantum Mechanics (MQM), correlation functions of

the momentum modes (“tachyons”) can be determined to all orders in the string coupling

(inverse cosmological constant). This holds true even in the Euclidean theory at finite
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radius R. Another feature is that its generalisation to the type 0 noncritical string, has

similar properties in perturbation theory but is believed to also be non-perturbatively

well-defined.

This makes the c = 1 string and its cousins a good laboratory to study various open

questions in string theory. Two such questions that we would like to understand better

in the noncritical context are the properties of string-scale black holes, and the nature of

various dualities, including open-closed string duality [2 – 4]. Much work has been done on

the former (some interesting recent studies can be found in refs. [5 – 7]), while the latter

question has also yielded some important illuminations [8, 9]

It is known [15, 16] that basic properties of black holes in noncritical string theory

are controlled by condensates of winding tachyons in the Euclidean-continued background.

These are thermal tachyons: strings winding around the compact time direction. It would

therefore be useful to know the correlators of winding modes in Euclidean noncritical string

theory to all orders in the string coupling (and even nonperturbatively in the stable type-0

case) as a function of µ and R, where µ−1 is the inverse string coupling and R is the radius

of the Euclidean direction (inverse temperature). From the matrix model point of view,

winding modes are related to the nonsinglet sector of the model, in which the eigenvalue

fermions are no longer free but mutually coupled [17, 18]. Computing correlators in this

way is a harder task [19] and has raised some new puzzles involving leg factors which we

will discuss in a later section. But one way to find the desired correlators is to assume

that T-duality holds and perform it on the momentum correlators. This provides one of

our motivations to study momentum correlators in the Euclidean theory in more explicit

detail than has already been done.

As mentioned above, momentum correlators in the Euclidean c = 1 string are known

in principle. They are summarised in the Toda hierarchy or W∞ symmetries [20], or Hirota

bilinear equations, or Normal Matrix Model (NMM) [21], all of which are supposed to be

mutually equivalent. For the special case of self-dual radius R = 1 of the Euclidean time

direction, they are encoded in a Kontsevich-Penner matrix model [22, 23] (see also [24, 25]).

We will summarise some relevant information about these solutions below. But while all

these formal solutions allow us to extract the perturbation series for any specific correlator

after a sufficient amount of work, we do not have many explicit answers in terms of special

functions depending on the radius R and inverse string coupling µ.

At finite radius, correlators have been computed mostly at tree-level (corresponding to

the dispersionless limit of the Toda hierarchy) or to a few low orders in perturbation theory.

For example, while the 2n-point function of n unit winding modes and n anti-winding modes

is known as a function of n and R at tree level [26, 16], an explicit expression for the same

correlator to all orders in perturbation theory does not seem to exist in the literature.1

To be more specific, denote by Tq the tachyons of momentum q = n/R, and by Tq the

tachyons of n units of winding, where q = nR is the value of pL = −pR in vertex operator

language. An explicit form is known for 〈(T−1/R)n(T1/R)n〉 at tree level. The T-dual of

1A differential equation for these correlators was written down in [16] together with an iterative solution

to a few orders. Related work on Euclidean correlators can be found in refs. [27, 28].
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this expression was used in ref. [16] to extract the critical behaviour of the Sine-Liouville

theory defined by perturbing the original c = 1 string with T−R + TR and then tuning the

cosmological constant µ to zero. In particular, ref. [16] showed that a sensible theory exists

after this tuning, but only when the radius of the Euclidean direction lies in the range

1 < R < 2.

One would like to know the structure of this correlator to all string loop orders. Accord-

ingly, in what follows we will study 〈(T−1/R)n(T1/R)n〉 in detail, and one of our main results

will be a simple formula for this correlator as a function of µ and R for every n. We expect

this to lead to a better understanding of the exponentiated correlator 〈exp(T−1/R +T1/R)〉,
which in turn is T-dual to the vortex condensate 〈exp(T−R + TR)〉 that relates directly to

Euclidean 2d black holes.

Another motivation for our work is to understand T-duality of the c = 1 matrix quan-

tum mechanics. This is established at the level of spectrum of states, since the partition

function without perturbations is known to be T-dual [29]. Also, a formal argument has

been given [16] that the winding correlators, like the momentum correlators, are given by a

Toda hierarchy.2 However, to our knowledge, beyond this result and a computation in [19],

there has been no direct comparison of correlators in the momentum and winding sectors.3

A convincing test of T-duality would consist of computing pure-momentum correlators in

terms of free fermion eigenvalues, T-dualising the answers and comparing them with pure-

winding correlators computed from the nonsinglet Hamiltonian. Ideally this should even

be done beyond tree level. Although we will not be able to carry out such a test here, we

have tried to systematise one side of the duality in a way that can be eventually compared

with the other side when nonsinglet computations become more practicable.

In particular, the most direct way to check T-duality comes from comparing two-

point functions. Accordingly we work out all two-point functions of momentum modes. In

ref. [19], the two-point function of unit-momentum modes was computed and an attempt

made to match the leading result with a computation in the first nonsinglet sector of

the matrix model, namely the adjoint sector. The comparison revealed the presence of

unexplained normalisation factors. It was pointed out in ref. [19] that if one could compute

two-point functions of more general winding modes, namely 〈T−nRTnR〉, one might be able

to shed some light on these normalisation factors. With this motivation we have performed

this computation and obtained a simple explicit result, again as a function of µ and R and

for all n. In a later section we discuss the relation to the non-singlet sectors.

Our initial computations have been performed using both the MQM and a model of

constant matrices called the Normal Matrix Model (NMM) [21], with perfect agreement

between the answers. In the former case we used the known infinite-radius correlators in

the physical MQM (real and noncompact time) [31], and a formula which converts these

to the correlators for Euclidean compact time [32]. In the latter case, we will describe how

2For a discussion of T-duality in type 0A,B matrix models, see ref. [30].
3In addition to pure momentum or pure winding correlators, one would also like to know the correlators

for a mixture of momentum and winding modes. In this case one has no choice but to tackle the difficult

nonsinglet sector problem. The system is not expected to be integrable and the correlation functions are

not known so far.
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one performs computations after reducing the NMM to eigenvalues. One surprise emerging

from comparison of the two approaches is that the NMM successfully computes correlators

even when the matrices are of finite rank N , a stronger property than was claimed in

ref. [21], who did however suggest that the model contains some information even at finite

N . We find that it actually contains complete information at finite N in the following sense:

given a correlator, there is a minimum value Nmin such that this correlator when computed

in the NMM gives the correct result, to all orders in 1/µ2, for all N > Nmin. This makes the

NMM a potentially powerful combinatoric tool. We then go on to demonstrate its power

by deriving a combinatoric formula for the general correlation function 〈(T−1/R)n(T1/R)n〉
for any n.

We start in section 2 by describing the two relevant matrix models, Matrix Quantum

Mechanics and Normal Matrix Model. The former is too well-known to need a detailed

discussion and we skip directly to the computational techniques and answers. For the

latter, we review the model in some detail, with special attention to the role of the matrix

rank N . In section 3 we work out some relevant correlators as a function of µ and R

from MQM. In section 4 we reproduce these correlators from the NMM, where we note the

phenomenon that for a fixed correlator, the NMM at any N greater than a minimum value

gives the complete answer. After a discussion of why this works, we use this property to

derive a combinatoric formula for correlators of any number of unit momentum modes. In

section 5 we discuss applications of these results to some physically interesting problems,

and conclude in section 6. Several computational details are presented in the appendices.

2. Matrix quantum mechanics and normal matrix model

2.1 Matrix quantum mechanics

Matrix Quantum Mechanics is a model of a single N ×N hermitian time-dependent matrix

M(t). In the absence of perturbations, the partition function of the model is given by:

Z(N)
MQM =

∫

[dM ] exp

[

−N

∫

dt tr
(

(DtM)2 + M2
)

]

(2.1)

where DtM ≡ Ṁ + i[At,M ] is the covariant derivative with respect to the time component

of a gauge field.

The gauge field acts as a Lagrange multiplier and projects the model to the singlet sec-

tor, which is a system of N non-interacting non-relativistic fermions moving in an inverted

harmonic oscillator potential. In the double-scaling limit, the Fermi sea is filled nearly to

the top and the number of fermions is taken to infinity. The scaled distance to the top of

the potential, µ, is kept finite and corresponds to the cosmological constant. This model

provides a description of 2D string theory, with µ−1 playing the role of the string coupling

gs.

The physical modes of 2D string theory can be constructed in terms of fermion eigen-

values. In [31] this model was used to calculate correlation functions of c = 1 string theory

at infinite radius. One starts by computing correlators of free-fermion bilinears, which in

– 4 –



J
H
E
P
0
7
(
2
0
0
6
)
0
1
7

turn can be used to extract correlators of the loop operators:

O(k, `) =

∫

dt eikt tr e−`M(t) (2.2)

Extracting the leading behaviour of these loops for small `, one has

O(k, `) ∼ `|k| Tk (2.3)

The Tk are identified with the c = 1 string theory tachyons. When compared with the

corresponding operators in Liouville theory, there is a change of normalisation:

Tk|MQM = Γ(|k|) Tk|Liouville (2.4)

However this fact will not be relevant for us, since in what follows we will always work with

the operators Tk in the MQM basis, i.e. the l.h.s. of the above equation.

When the time direction is Euclidean and compact, we are in the finite temperature

theory. Starting from the infinite-radius correlator, one can show [32] that correlators in

the Euclidean theory at finite radius are obtained as:

〈Tq1
Tq2

· · ·Tqn〉R =
1

2R∂µ

sin
(

1
2R∂µ

)〈Tq1
Tq2

· · ·Tqn〉∞ (2.5)

In addition one must replace the momentum-conserving δ-function as:

δ
(

∑

i

qi

)

→ R δP

i qi,0 (2.6)

The above prescriptions follow from the fact that the compact radial direction intro-

duces an additional factor in the loop momentum integrals of the infinite-radius calculation,

and this factor can now be taken out of the integrals whence it becomes a differential op-

erator acting on the infinite-radius answer.4

In the finite-temperature theory, the above modes can be thought of as carrying “mo-

mentum” in the time direction. In this situation one also expects to find winding modes

corresponding to the thermal scalars of finite-temperature string theory. Many physical

properties of string theory are encoded in these degrees of freedom, which are therefore

quite important to study. To find them in the matrix model we must go beyond the singlet

sector, in which the gauge field is topologically trivial and can be gauged away. Consider

the gauge-invariant Wilson-Polyakov loop variable:

WR = trR P exp(i

∮

Atdt) (2.7)

where the trace is performed in the representation R of SU(N). When R is the fundamental

representation, this is to be associated with a unit winding mode:

WR=N ∼ TR (2.8)

4It is also possible to calculate correlators directly at finite radius using the “reflection coefficient”

formalism of ref. [20]. Though we will not use this here, it would be interesting to know if our explicit

results follow as easily in that approach.
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Similarly the trace in the anti-fundamental will be T−R. One can also have loops where

the trace continues to be in the fundamental but the contour winds multiple times over the

Euclidean time direction. Computation of the correlation functions of all these Wilson-

Polyakov loops is done by observing that in their presence, the matrix model receives

contributions from definite non-singlet sectors. In these sectors it reduces to eigenvalue

fermions but now with mutual interactions. For example, the two-point function of unit

winding modes can be identified as follows:

〈T−RTR〉
∣

∣

∣

Liouville theory

∼ 〈WN̄WN 〉
∣

∣

∣

MQM

∼ 〈Wadjoint〉
∣

∣

∣

MQM

(2.9)

Thus computing the partition function of MQM in the adjoint sector determines the two-

point function of winding modes. Since in principle this is an independent computation

from that of the momentum tachyon correlators, it can actually be used to check T-duality

of the c = 1 string. We will return to this issue in a subsequent section.

2.2 Normal Matrix Model

The Normal Matrix Model (NMM) [21] is a relatively simple model of a complex matrix

Z and its Hermitian adjoint, with the constraint that the two commute (hence Z is said

to be “normal”). The potential is polynomial with an additional logarithmic piece. The

matrix Z is constant rather than time-dependent, so in this sense it is more similar to the

c < 1 string backgrounds which do not have a time direction.5

The NMM is proposed to describe the correlators of the c = 1 string to all orders in

perturbation theory, as follows. Let us introduce its partition function:

Z(N)
NMM(ν, t, t) =

∫

[dZdZ†] e
tr

“

−ν(ZZ†)R+(Rν−N+ R−1

2
) log ZZ†−ν

P∞
k=1

(tkZk+tkZ†k
)
”

(2.10)

Here R, ν are some (in general, complex) parameters, which will correspond to the com-

pactification radius of Euclidean time and the cosmological constant respectively. The

parameters tk, tk are couplings to the gauge-invariant operators trZk, trZ†k
and Z, Z† are

N × N matrices satisfying:

[Z,Z†] = 0 (2.11)

The operators trZk, trZ†k
are identified with the tachyons Tk/R, T−k/R of momentum ± k

R

respectively.

Since the matrix Z commutes with its adjoint, the two can be simultaneously diago-

nalised. The diagonalising matrices drop out of the action leaving behind Vandermonde

factors. It turns out that one gets a single power of the Vandermonde for the eigenvalues

z1, z2, . . . , zN of Z, together with its complex conjugate corresponding to Z†. Thus, for

example, the partition function at tk = tk = 0 is:

ZNMM =

∫ N
∏

i=1

d2zi

∏

i<j

|zi − zj|2 e−ν
PN

i=1
(ziz̄i)

R+(Rν−N+ R−1

2
)

PN
i=1

log ziz̄i (2.12)

with an obvious generalisation to include the tachyon perturbations.

5Perhaps this is the underlying reason why the NMM describes Euclidean c = 1 strings at an arbitrary

radius R, but does not have a simple R → ∞ limit where one might recover the Lorentzian theory.
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At tk = t̄k = 0, it can be shown (though not directly from the action) that the NMM

is invariant under the T-duality operation:

R → 1

R
, µ → µ R (2.13)

This invariance is broken by the presence of momentum modes. Indeed, after T-duality,

the tachyons T±k/R of the c = 1 string turn into winding modes of ±k units of winding, or

equivalently (in vertex-operator language) of left/right momentum (pL, pR) = ±(kR,−kR).

In what follows, these modes will be denoted TkR,T−kR.

In [21] two distinct equivalences between the NMM and the c = 1 string were proposed.

The first, referred to as “Model I”, requires us to take the large-N limit of the NMM. The

result in this case was that:

Zc=1(µ, t, t) = lim
N→∞

Z(N)
NMM(ν, t, t), (2.14)

after the analytic continuation ν = −iµ.

However, another equivalence, “Model II”, was proposed which did not involve a large-

N limit. It was argued that the c = 1 string theory can be obtained from the NMM at finite

N , provided ν is set to the special value N
R (note that this corresponds to an imaginary

cosmological constant):

Zc=1

(

µ = iN
R , t, t

)

= Z(N)
NMM

(

ν = N
R , t, t

)

, (2.15)

In other words, the claim6 is that an NMM calculation for a fixed integer value of N

determines Zc=1 for a particular (imaginary) value of µ, namely

µ = i
N

R
(2.16)

If we T-dualise the above considerations so that t, t become couplings to winding tachyons,

this relation becomes

µ = iN (2.17)

The above results seem to indicate that for finite N we can only generate the answer at

a fixed µ, in which case we would never obtain the perturbative expansion in powers of

1/µ2. However, below we will compute winding correlators using the NMM, and will see

that it turns out much more powerful than expected. It actually does reproduce the entire

perturbative correlators, as functions of µ and R, even at finite values of N . Evidence for

this fact, as well as an explanation of it, will be provided in subsequent sections.

6The authors of ref. [21] stated this a little differently: that one obtains c = 1 string amplitudes as a

function of µ by computing NMM correlators as a function of N and µ, and then continuing N to the

imaginary value −iµR. This procedure is less well-defined, as it requires us to make a discrete parameter

continuous.
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3. Correlators from matrix quantum mechanics

3.1 Two-point functions

We start by presenting formulae for the two-point function 〈T−n/RTn/R〉 to all orders in
1
µ2 , from the Matrix Quantum Mechanics (MQM) approach. We will derive these formu-

lae, valid at arbitrary radius, starting from the infinite-radius formulae presented in [31].

We start by quoting the closed-form expression for the infinite-radius two-point function

〈T−qTq〉, or more precisely the first derivative of the two-point function with respect to the

cosmological constant, which is actually more convenient for our purposes:

∂µ〈T−qTq〉∞ = (Γ(−q))2 Im eiπq/2

(

Γ
(

1
2 − iµ + q

)

Γ
(

1
2 − iµ

) − Γ
(

1
2 − iµ

)

Γ
(

1
2 − iµ − q

)

)

, (3.1)

where q > 0. For clarity of presentation we will drop the leg-pole factors (Γ(−q))2 in what

follows, keeping in mind that they can be restored whenever needed.

Now we obtain the corresponding amplitudes at a finite radius R, using eqs. (2.5)

and (2.6):

〈T−qTq〉R = R
1

2R

sin
(

1
2R∂µ

) Im eiπq/2

(

Γ
(

1
2 − iµ + q

)

Γ
(

1
2 − iµ

) − Γ
(

1
2 − iµ

)

Γ
(

1
2 − iµ − q

)

)

where the first factor of R comes from the replacement of the δ-function by a Kronecker δ

as in eq. (2.6). The differential operator in front is real and acts only on functions of µ, so

it can be moved inside and we thus need to evaluate

1

2 sin
(

1
2R∂µ

)

(

Γ
(

1
2 − iµ + q

)

Γ
(

1
2 − iµ

) − Γ
(

1
2 − iµ

)

Γ
(

1
2 − iµ − q

)

)

This can be done very easily by expanding the operator as follows

1

2 sin
(

1
2R∂µ

) = −i
∞
∑

j=0

ei(j+ 1

2
) 1

R
∂µ

Using this we get the required expression as

−i
∞

∑

j=0





Γ
(

1
2 − iµ + q + j

R + 1
2R

)

Γ
(

1
2 − iµ + j

R + 1
2R

) −
Γ

(

1
2 − iµ + j

R + 1
2R

)

Γ
(

1
2 − iµ − q + j

R + 1
2R

)



 (3.2)

Next, we choose q = n/R. We see that the jth term from the first sum cancels the (j +n)th

term from the second sum. So only the j = 0, 1, . . . , n − 1 terms from the second sum

remain. Defining r = n − j, the above expression becomes:7

〈T−n/RTn/R〉 = Re eiπn/2R
n

∑

r=1

Γ
(

1
2 − iµ + (r − 1

2) 1
R

)

Γ
(

1
2 − iµ + (r − n − 1

2) 1
R

) (3.3)

7Here and in what follows, we drop the R subscript in the correlators wherever it is obvious that they

are at finite R.
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In order to obtain the expansion of this expression in powers of 1/µ2, we can rewrite

it in terms of the special functions:

F±(a, b;µ) ≡ Γ(1
2 − iµ + a)

Γ(1
2 − iµ + b)

± Γ(1
2 − iµ − b)

Γ(1
2 − iµ − a)

(3.4)

defined in eq. (B.2) of ref. [31]. We have:

〈T−n/RTn/R〉 = Re eiπn/2R

n/2
∑

r=1

F+
(

(r − 1
2 ) 1

R , (r − n − 1
2) 1

R ;µ
)

, n even (3.5)

= Re eiπn/2R

(

1
2F

+
(

n
2R ,− n

2R ;µ
)

+

(n−1)/2
∑

r=1

F+
(

(r − 1
2 ) 1

R , (r − n − 1
2 ) 1

R ;µ
)

)

, n odd

Next we use the asymptotics for large µ:

F+(a, b;µ) = e−iπ(a−b)/2 µa−b f(a, b;µ) (3.6)

where f(a, b;µ) is a power series in 1
µ2 with real coefficients and starting with a constant

term:

f(a, b;µ) = 2 − 1
12(a − b)(a − b − 1)

(

3(a + b)2 − (a − b) − 1
) 1

µ2
+ O

(

1

µ4

)

(3.7)

It follows that, for even n:

〈T−n/RTn/R〉 = Re µn/R

n/2
∑

r=1

f
(

(r − 1
2) 1

R , (r − n − 1
2) 1

R ;µ
)

= µn/R

n/2
∑

r=1

f
(

(r − 1
2 ) 1

R , (r − n − 1
2 ) 1

R ;µ
)

=

∣

∣

∣

∣

∣

n
∑

r=1

Γ(1
2 − iµ + (r − 1

2) 1
R )

Γ(1
2 − iµ + (r − n − 1

2) 1
R )

∣

∣

∣

∣

∣

(3.8)

The first step above follows because the function f is real. The final equality is true for

all n, and not just even values. This then is the complete answer for the perturbative

expansion of two-point functions of momentum correlators at arbitrary radius.

Specialising to n = 1, we find the following expression, which will be useful later on:

〈T−1/RT1/R〉 =

∣

∣

∣

∣

∣

Γ
(

1
2 − iµ + 1

2R

)

Γ
(

1
2 − iµ − 1

2R

)

∣

∣

∣

∣

∣

(3.9)

After a T-duality

R → 1/R, µ → µR (3.10)

we get the unit-winding two-point function

〈T−RTR〉 =

∣

∣

∣

∣

∣

Γ
(

1
2 − iµR + R

2

)

Γ
(

1
2 − iµR − R

2

)

∣

∣

∣

∣

∣

(3.11)

This expression was recently derived by Maldacena [19]. We should note that the above

answer has to be multiplied by the leg pole factor
(

Γ(−R)
)2

, which we dropped after

eq. (3.1).
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3.2 Four-point functions

In this section we turn to the computation of higher point functions. In particular, we

extend the results for the four-point function from MQM to finite R and then specialise to

the case of unit winding modes. In this case we will be able to find an explicit all-orders

result after summing an infinite series.

Upto leg pole factors (which can be unambiguously restored when needed) the con-

nected four-point function at infinite radius is [31]:

∂µ〈(T−qTq)
2〉conn

∞ = Im eiπq

[

F+(2q, 0;µ) −F+(q,−q;µ) +

∞
∑

n=1

(−1)n

n!
2

(

Γ(−q + n)

Γ(−q)

)2

×
(

Γ
(

2q − n + 1
2 − iµ

)

Γ
(

1
2 − iµ

) − Γ
(

q − n + 1
2 − iµ

)

Γ
(

−q + 1
2 − iµ

)

)]

, (3.12)

where q > 0 and the function F+ is defined in eq. (3.4).

Substituting eq. (3.4) in eq. (3.12) we have

∂µ〈(T−qTq)
2〉conn

∞ = Im eiπq

[

Γ
(

1
2 − iµ + 2q

)

Γ
(

1
2 − iµ

) +
Γ

(

1
2 − iµ

)

Γ
(

1
2 − iµ − 2q

) − 2
Γ

(

1
2 − iµ + q

)

Γ
(

1
2 − iµ − q

)

+2
∞

∑

n=1

(−1)n

n!

(

Γ(−q + n)

Γ(−q)

)2
(

Γ
(

1
2 − iµ + 2q − n

)

Γ
(

1
2 − iµ

) − Γ
(

1
2 − iµ + q − n

)

Γ
(

1
2 − iµ − q

)

)]

(3.13)

The connected finite-R amplitude is, therefore

〈(T−qTq)
2〉conn

R = R
1

2R∂µ

sin
(

1
2R∂µ

)〈(T−qTq)
2〉conn

∞

We use the expansion eq. (3.2) of the differential operator and set q = 1/R to get

〈(T−1/RT1/R)2〉conn = Re eiπ/R

(

−Γ
(

1
2 − iµ + 3

2R

)

Γ
(

1
2 − iµ − 1

2R

) +
Γ

(

1
2 − iµ + 1

2R

)

Γ
(

1
2 − iµ − 3

2R

)

−2

∞
∑

n=1

(−1)n

n!

(

Γ(− 1
R + n)

Γ(− 1
R)

)2
Γ

(

1
2 − iµ + 3

2R − n
)

Γ
(

1
2 − iµ − 1

2R

)



 (3.14)

It is convenient to add and subtract a term corresponding to n = 0 in the summation.

This extends the sum from 0 to ∞, while the subtracted term changes the sign of the first

term above, after which the first two terms combine into an F+. Thus we get:

〈(T−1/RT1/R)2〉conn = Re eiπ/R

(

F+( 3
2R ,− 1

2R ;µ)

−2

∞
∑

n=0

(−1)n

n!

(

Γ(− 1
R + n)

Γ(− 1
R)

)2
Γ

(

1
2 − iµ + 3

2R − n
)

Γ
(

1
2 − iµ − 1

2R

)



 (3.15)

– 10 –



J
H
E
P
0
7
(
2
0
0
6
)
0
1
7

The sum is now easy to evaluate using the integral representations for the three Γ-functions

in the numerator that depend on n (see appendix B). This finally leads to:

〈(T−1/RT1/R)2〉conn = Re eiπ/R

(

F+( 3
2R ,− 1

2R ;µ) − 2
(

1
2F

+( 1
2R ,− 1

2R ;µ)
)2

)

=

∣

∣

∣

∣

F+( 3
2R ,− 1

2R ;µ) − 2
(

1
2F

+( 1
2R ,− 1

2R ;µ)
)2

∣

∣

∣

∣

(3.16)

One can verify that the two terms above are, respectively, the full (connected plus discon-

nected) correlator, and its disconnected part.

4. Correlators in the finite-N normal matrix model

Having obtained explicit expressions for all two-point and a particular four-point function

from the MQM, as a function of the cosmological constant µ and radius R, we now attempt

to recover the same results from the NMM. This first of all provides a test of the NMM

and its effectiveness. But once we explore the systematics it will become clear that we

can compute much more. In fact, we will obtain a complete combinatorial formula for

the 2n-point functions of unit-momentum correlators. Via T-duality, this determines the

corresponding winding correlators. We expect this to be useful in determining the full

vortex condensate to all orders in perturbation theory.

As mentioned before, in the process of studying the NMM we will encounter a rather

surprising result: for the purpose of computing correlators, one can actually take N to be

a small finite value and yet obtain the correct answer as a function of µ. The finite value

of N will be determined by the operators whose correlators we are calculating. For this

purpose it is convenient to classify tachyon correlators into sectors labelled by an integer,

the total positive momentum P flowing through that correlator, measured in units of 1/R.

For example in 〈T−k1/RT−k2/RTm1/RTm2/R〉, where k1, k2,m1,m2 are all positive, the total

positive momentum is P = m1 + m2 = k1 + k2. This number will determine the minimum

value of N required in the NMM to compute these correlators. In what follows we will

first consider all correlators in the sectors P = 1 and P = 2. In the former case there is

only a single two-point function, while in the latter case we have two, three and four-point

functions. After presenting some examples we will discuss why the theory works in this

way.

4.1 Two-point functions: examples

Example: n = 1

We begin by computing the two point function of the unit momentum operator. Since

total momentum is conserved, this operator is paired with the one of negative unit mo-

mentum. So we will calculate the two point function 〈T−1/RT1/R〉 of unit momentum

operators.

We first calculate the partition function of NMM at N = 1:

ZN=1
NMM(t = 0) =

∫

dzdz̄ e−ν(zz̄)R+(Rν−1+ R−1

2
) log zz̄ (4.1)
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Setting z =
√

m eiθ, dzdz̄ → dm dθ, we have:

ZN=1
NMM(t = 0) =

∫ ∞

0

∫ 2π

0
dm dθ e−νmR+(Rν−1+ R−1

2
) log m

= 2π

∫ ∞

0
dm m(Rν−1+ R−1

2
)e−νmR

=
2π

R
ν−(ν+ 1

2
− 1

2R )Γ
(

ν + 1
2 − 1

2R

)

(4.2)

As a function of ν, this is not the correct partition function of the c = 1 string, but it

reduces to the correct partition function if in the above expression we set ν = 1
R and

compare this with Zc=1(
i
R , t = 0, t = 0). This fact is a direct consequence of the claim in

ref. [21], see eq. (2.15). It is also worth noting that the partition function at N = 1 is not

invariant under T-duality. In fact, T-duality in the NMM partition function is recovered

only in the limit N → ∞. This makes it clear that the correct partition function, as a

function of µ and R, can never be recovered at finite N .

For correlators, things are quite different, as we will now see. For the two-point func-

tion, we find:

∂−1∂1ZN=1
NMM(t = 0) =

∫ ∞

0

∫ 2π

0
dm dθ m e−νmR+(Rν−1+ R−1

2
) log m

=
2π

R
ν−(ν+ 1

2
+ 1

2R)Γ
(

ν + 1
2 + 1

2R

)

(4.3)

From eq. (4.2) and eq. (4.3) we have:

∂−1∂1 lnZN=1
NMM(t = 0) = ν− 1

R
Γ

(

ν + 1
2 + 1

2R

)

Γ
(

ν + 1
2 − 1

2R

) (4.4)

Finally, we have to analytically continue ν = −iµ. The result is complex, but can easily

be seen to have the form of an overall phase times a real power series in 1/µ2. Dropping

the phase is then equivalent to taking the modulus of the above expression. This gives:

〈T−1/RT1/R〉N=1
NMM = µ− 1

R

∣

∣

∣

∣

∣

Γ
(

1
2 − iµ + 1

2R

)

Γ
(

1
2 − iµ − 1

2R

)

∣

∣

∣

∣

∣

(4.5)

which agrees with eq. (3.9) upto the prefactor, µ−1/R, which indicates that the “tachyons”

of the NMM are normalised differently from those of MQM. Indeed we will argue later that

the relationship is:

Tn/R|NMM = µ−n/2R Tn/R|MQM (4.6)

We have discovered the surprising result that the exact two-point correlator of unit

momentum tachyons is correctly calculated (as a function of µ and R) using only the 1× 1

Normal Matrix Model! According to eq. (2.15), we should have expected the result to

be correct only for µ = i/R. We will see that a similar feature holds for all two-point

correlators, though the minimum required value of N depends on the correlator under

consideration. Later we will extend this observation to higher-point correlators.
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Example: n = 2

We consider another example, the correlator 〈T−2/RT2/R〉. In this case, according to

the prediction in eq. (2.15), we can perform a calculation at N = 1 and the result so

obtained will be valid at the special value of the cosmological constant ν = 1. However,

we now face a puzzle. In the NMM at N = 1, one cannot distinguish the four correlators:

〈T−2/R T2/R〉, 〈T−2/R T1/R T1/R〉, 〈T−1/R T−1/R T2/R〉, 〈T−1/R T−1/R T1/R T1/R〉
(4.7)

because all of these are represented by the same NMM correlator 〈z2z̄2〉. Therefore, assum-

ing eq. (2.15) continues to hold, either it has to be the case that all four correlators become

the same at ν = 1
R , or else at best we can only hope to obtain some linear combination of

them.

The calculation is straightforward and upon continuing to ν = −iµ and taking the

modulus, we find:

〈T−2/RT2/R〉N=1
NMM = µ−2/R

∣

∣

∣

∣

∣

Γ
(

1
2 − iµ + 3

2R

)

Γ
(

1
2 − iµ − 1

2R

)

∣

∣

∣

∣

∣

(4.8)

This can be compared with the known result from eq. (3.8). Specialising to the present

case, and changing to the NMM normalisation via eq. (4.6) gives us:

〈T−2/RT2/R〉 =

∣

∣

∣

∣

∣

Γ(1
2 − iµ + 1

2R )

Γ(1
2 − iµ − 3

2R )
+

Γ(1
2 − iµ + 3

2R )

Γ(1
2 − iµ − 1

2R )

∣

∣

∣

∣

∣

(4.9)

Comparing eqs. (4.8), (4.9), we see that the NMM result for this correlator at N = 1 is

not correct. This is not a surprise. But now we see that it is incorrect even at the special

value µ = i/R, which appears to contradict eq. (2.15). As we will see, this is due to the

fact that the same NMM correlator can describe different tachyon correlation functions for

low N . Indeed, one can check that the answer we have obtained at N = 1 in eq. (4.8)

is actually a linear combination of the correlators in eq. (4.7) as calculated from matrix

quantum mechanics.

Let us continue by evaluating the NMM correlator at N = 2. In this case the operator

we are dealing with is T2/R ∼ trZ2 which is linearly independent of (T1/R)2 ∼ (trZ)2 once

Z is a 2 × 2 matrix, so there is no longer a risk of mixing for the operators in eq. (4.7).

The computation is given in an appendix, and leads to the answer eq. (A.5), which after

changing to the NMM normalisation is:

〈T−2/RT2/R〉N=2
NMM =

∣

∣

∣

∣

∣

Γ
(

1
2 − iµ + 3

2R

)

Γ
(

1
2 − iµ − 1

2R

) +
Γ

(

1
2 − iµ + 1

2R

)

Γ
(

1
2 − iµ − 3

2R

)

∣

∣

∣

∣

∣

(4.10)

Following eq. (2.15) we would expect that this should give the correct answer for µ = 2i/R.

But now there is a surprise, since in fact it agrees perfectly with the MQM result eq. (4.9)

for all values of µ. Thus for the purposes of calculating 〈T−2/RT2/R〉 in c = 1 string theory,

to all orders in the string coupling, a 2 × 2 matrix model is sufficient.

To summarise, we have found evidence that an NMM calculation of tachyon correlators

at finite N (where the minimum required value of N depends on the correlator in question)

– 13 –
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gives the correct tachyon correlators for the c = 1 string, to all orders in perturbation

theory. Below we will collect more evidence for this property, which appears to go far

beyond the result of ref. [21] as stated in eq. (2.15) above.

4.2 Two-point functions: general case

Let us now consider the general case 〈T−n/RTn/R〉. and try to derive this result from the

NMM. We will find that for this correlator, the NMM with N = n is sufficient to give

the correct result. Indeed, when we compute in the N × N NMM starting at N = 1 and

increasing N in integer steps, we obtain the right c = 1 string correlator (as a function of

µ) as long as N ≥ n, though not for N < n. Thus the NMM calculation “stabilises” at a

certain minimum value of N .

Since we will be computing normalised correlators, we start by computing the (unper-

turbed) partition function at a general value of N . This is given by

ZN
NMM(t = 0) =

∫ ∞

0

N
∏

r=1

dmr

∫ 2π

0

N
∏

r=1

dθr (4.11)

×
N
∏

j<k

(

mj + mk −
√

mjmk(e
iθjk + e−iθjk)

)

e−ν(
PN

r=1
mR

r )+(Rν−N+ R−1

2
)(

PN
r=1

log mr)

The next step is to perform the integration over the θ’s. In general this will be quite

tedious, because one has to pick out terms which are independent of θ by expanding out

the Vandermonde factor. However, we notice that since the above expression is invariant

under permutations of m’s, we can determine all terms surviving the θ integrals if we know

just one of them, by permuting the m’s among themselves.

The first such term is just the product of the first term from each of the Vandermonde

factors, which is mN−1
1 mN−2

2 · · ·mN−1. Thus we have, after evaluating the θ integrals

ZN
NMM(t = 0) = (2π)NN !

∫ ∞

0

N
∏

r=1

dmr

N−1
∏

j=1

mN−j
j (4.12)

× e−ν(
PN

r=1
mR

r )+(Rν−N+ R−1

2
)(

PN
r=1

log mr)

= (2π)NN !
N
∏

r=1

ν−(ν+ 1

2
−(r− 1

2
) 1

R)Γ
(

ν + 1
2 −

(

r − 1
2

)

1
R

)

¿From now on we will restrict to the case N = n.

The next step is to compute the two point function and then normalise by the above

partition function. We have:

∂−n∂nZN=n
NMM(t = 0) =

∫ n
∏

r=1

d2zr

n
∏

j<k

|zj − zk|2
(

n
∑

l=1

zn
l

)(

n
∑

l=1

z̄n
l

)

×e−ν(
Pn

r=1
(zr z̄r)R)+(Rν−n+ R−1

2
)(

Pn
r=1

log zr z̄r)

=

∫ ∞

0

n
∏

r=1

dmr

∫ 2π

0

n
∏

r=1

dθr

n
∏

j<k

(

mj + mk −√
mjmk(e

iθjk + e−iθjk)
)

– 14 –



J
H
E
P
0
7
(
2
0
0
6
)
0
1
7

×
(

n
∑

r=1

(√
mr

)n
einθr

)(

n
∑

r=1

(√
mr

)n
e−inθr

)

×e−ν(
Pn

r=1
mR

r )+(Rν−n+ R−1

2
)(

Pn
r=1

log mr) (4.13)

In this case also we can avoid tedious calculation by applying the permutation trick. The

contribution to the first term from the Vandermonde is same as before, and the contribution

from trZn trZ†n is
∑n

r=1 mn
r . The net contribution is then (

∑n
r=1 mn

r ) mn−1
1 mn−2

2 · · ·mn−1.

Proceeding as before we have after the θ integrals

∂−n∂nZN=n
NMM(t = 0) = (2π)nn!

∫ ∞

0

n
∏

r=1

dmr

(

n
∑

r=1

mn
r

)

n−1
∏

j=1

mn−j
j

×e−ν(
Pn

r=1
mR

r )+(Rν−n+ R−1

2
)(

Pn
r=1

log mr)

= (2π)nn!

n
∑

j=1

[

ν−(ν+ 1

2
−(j−n− 1

2
) 1

R)Γ

(

ν +
1

2
−

(

j − n − 1

2

)

1

R

)

×
n

∏

r=1

r 6=j

ν−(ν+ 1

2
−(r− 1

2
) 1

R) Γ

(

ν +
1

2
−

(

r − 1

2

)

1

R

)]

(4.14)

From eq. (4.12) and eq. (4.14) we find (after changing variables j → n + 1 − r):

〈T−n/RTn/R〉N=n
NMM = ν−n/R

n
∑

r=1

Γ
(

1
2 − iµ + (r − 1

2) 1
R

)

Γ
(

1
2 − iµ + (r − n − 1

2) 1
R

) (4.15)

As before, we analytically continue ν = −iµ and take the modulus to get:

〈T−n/RTn/R〉N=n
NMM = µ−n/R

∣

∣

∣

∣

∣

n
∑

r=1

Γ
(

1
2 − iµ + (r − 1

2) 1
R

)

Γ
(

1
2 − iµ + (r − n − 1

2) 1
R

)

∣

∣

∣

∣

∣

(4.16)

After changing normalisation via eq. (4.6), we see that this agrees perfectly with eq. (3.8).

The above calculation was performed with matrices of rank N = n. It can easily be

repeated for the other cases. When N is smaller than n, we find that the answer, as a

function of µ, is not equal to the correct two-point function, and does not become the

correct one even after choosing µ = in/R. As before, this is due to “contamination” by

correlators of higher point functions carrying the same total momentum, because for N < n

the corresponding correlators in the NMM are not all linearly independent. For N > n,

instead, we actually get the same final answer as for N = n. The computational procedure

we described above seems to suggest that extra terms arise for N > n, but actually they

are cancelled by contributions from the θ dependent terms in the Vandermonde factor.

Thus when we take the ratio of ∂−n∂nZ and Z we end up with the r.h.s. of eq. (4.15).

Therefore as long as we take N ≥ n, we get the right answer (independent of N) for every

N . This is what we referred to as “stabilisation” above.

4.3 Four-point functions

Now we would like to compute the four-point function in the Normal Matrix Model. For

N = 1, the calculation has already been performed, since as we noted above, it is the same
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as the corresponding calculation for the two-point function in eq. (4.8) (more precisely the

disconnected four-point function is the same as this two-point function). As we explained

there, the result so obtained is a linear combination of the correct two, three and four-point

functions of the c = 1 string, and to distinguish them we need to go to a higher value of

N . Accordingly we have computed the above four-point function using the N = 2 NMM.

The derivation can be found in appendix C, and the result is:

〈(T−1/RT1/R)2〉N=2
NMM = µ−2/R

∣

∣

∣

∣

F+( 3
2R ,− 1

2R ;µ) − 1
2

(

F+( 1
2R ,− 1

2R ;µ)
)2

∣

∣

∣

∣

(4.17)

Changing from MQM to NMM normalisation using eq. (4.6), and inserting the usual 1/R

factor, we see that eq. (4.17) above is identical to eq. (3.16).

For completeness, let us briefly consider the two three-point functions

〈T−2RTRTR〉N=2
NMM, 〈T2RT−RT−R〉N=2

NMM (4.18)

The two are actually equal to each other because of the symmetry X → −X, where X is

the Euclidean time direction. We have calculated these correlators both from MQM and

NMM (at N = 2) and the agreement is exactly as for the cases considered above.

4.4 Why it works

As we reviewed in section 2, the Normal Matrix Model determines every momentum cor-

relator by differentiation with respect to the momentum couplings t, t. However, the cor-

relators so obtained should only be correct in the limit N → ∞ (“Model I”, eq. (2.14))

or the special values N = νR (“Model II”, eq. (2.15)). Now in the previous subsections

we have shown in several examples (including the infinite set of two-point functions) that,

given the total momentum P flowing in the correlator, the NMM with matrices of any rank

N ≥ P suffices to compute the correlator completely as a function of µ and R. In view of

this, the NMM appears to go beyond its expected range of validity. Here we will give an

explanation as to how this comes about.

The basic observation is that the phenomenon we are observing is not to be viewed as

an application of Model II, but rather of Model I. Indeed, using Model II and a definite

value of N , it is clear from eq. (2.15) that the answers obtained are correct only for a

definite value of ν, namely ν = N/R. This relation between N and ν defines a line in

(N, ν) space, and the points on this line where N takes integer values are the ones where

the procedure works. However, it is clear that in this way one can never recover the full ν

dependence at a fixed N .

In contrast, in Model I one is supposed to compute correlators at an arbitrarily large

value of N and in the limit N → ∞, the correct answers are obtained as a function of ν.

What we will now show is that, after computing a given correlator of total momentum P

in this way, and then dividing by the partition function, infinitely many terms cancel out

exactly in the ratio. The remaining terms, which actually contribute to the correlator of

interest, are the same as one would compute for a finite value of N , namely N = P .

The argument goes as follows. From the derivation we have given in the previous sub-

sections and the appendices, any correlator is generated (after θi integrations) by inserting
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an expression of the form
∏N

i=1 mαi

i into the mi integrals, where {αi} correspond to ordered

partitions of P . Therefore we should first of all choose N large enough so that all such

partitions can be realised and are distinguishable. This is possible for N ≥ P . For N < P

we will miss some partitions, and thus the answer cannot be correct. But the case N > P

realises the same partitions as the case N = P and thus gives the same answer. This causes

what we earlier called “stabilisation”, which amounts to saying that the result for N = P

is identical to the result for any N > P , and therefore for N = ∞. Invoking the converse

of stabilisation, we can therefore start with the model defined at N = ∞ and “bring back”

the value of N to any finite value N ≥ P without changing the result. This explains why

a finite-N matrix model is sufficient to compute any momentum correlator.

4.5 Combinatorial result for 2n-point functions

We have shown that the NMM is an effective tool by re-computing known correlators.

Now that we understand how and why it works, we apply it to compute a new result: the

full (connected plus disconnected) 2n-point function 〈(T−1/RT1/R)n〉 for every n and to all

orders in perturbation theory. The result, derived in appendix D, is the following:

〈(T−1/RT1/R)n〉 =

∣

∣

∣

∣

∣

∣

∑

{ki}

C({ki})2
n

∏

i=1

Γ
(

1
2 − iµ + (ki − n + 1

2) 1
R

)

Γ
(

1
2 − iµ − (i − 1

2) 1
R

)

∣

∣

∣

∣

∣

∣

(4.19)

with C({ki}) defined as:

C({ki}) =
∑

P

(−1)P
n

∏

i=1

(

n − ∑i−1
j=1(kj − Pj)

ki − Pi

)

(4.20)

Here, {ki} are strictly ordered partitions of n(n + 1)/2, namely:

k1 > k2 > · · · > kn,

n
∑

i=1

ki =
n(n + 1)

2
(4.21)

and P denote permutations of the n numbers n − 1, n − 2, . . . , 0.

Let us examine this result more closely. In principle, for every n the answer is a sum

of terms, each one being the ratio of n Γ-functions divided by n Γ-functions. However in

practice, some of the numerator and denominator terms can cancel out. We can see this

more explicitly if we list the first few special cases, of which the first two have already been

noted above:

〈T−1/RT1/R〉 =

∣

∣

∣

∣

∣

Γ
(

1
2 − iµ + 1

2R

)

Γ
(

1
2 − iµ − 1

2R

)

∣

∣

∣

∣

∣

〈(T−1/RT1/R)2〉 =

∣

∣

∣

∣

∣

Γ
(

1
2 − iµ + 3

2R

)

Γ
(

1
2 − iµ − 1

2R

) +
Γ

(

1
2 − iµ + 1

2R

)

Γ
(

1
2 − iµ − 3

2R

)

∣

∣

∣

∣

∣

(4.22)

〈(T−1/RT1/R)3〉 =

∣

∣

∣

∣

∣

Γ(1
2 − iµ + 5

2R )

Γ(1
2 − iµ − 1

2R )
+ 4

Γ(1
2 − iµ + 3

2R)

Γ(1
2 − iµ − 3

2R)
+

Γ(1
2 − iµ + 1

2R )

Γ(1
2 − iµ − 5

2R )

∣

∣

∣

∣

∣
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The pattern emerging so far is misleadingly simple, as we see with the next example, the

8-point function:

〈(T−1/RT1/R)4〉 =

∣

∣

∣

∣

∣

Γ(1
2 − iµ + 7

2R)

Γ(1
2 − iµ − 1

2R)
+ 9

Γ(1
2 − iµ + 5

2R )

Γ(1
2 − iµ − 3

2R )
+ 9

Γ(1
2 − iµ + 3

2R)

Γ(1
2 − iµ − 5

2R)

+
Γ(1

2 − iµ + 1
2R )

Γ(1
2 − iµ − 7

2R )
+ 4

Γ(1
2 − iµ + 1

2R )

Γ(1
2 − iµ − 1

2R )

Γ(1
2 − iµ + 3

2R)

Γ(1
2 − iµ − 3

2R)

∣

∣

∣

∣

∣

(4.23)

We see that as the number of operators in the correlator grows, one gets products of more

and more Γ-functions in the numerator and denominator. In this example we also see

clearly that the coefficients are perfect squares.

Ideally one would like to know the connected part of the 2n-point function. In principle

this can of course be obtained by repeated application of eq. (4.19), but one would like

a more explicit and useful expression. However, for the most likely application, to the

vortex condensate, we will not really need to make the distinction between connected and

disconnected correlators. The vortex condensate corresponds to the partition function of

a perturbed theory, and to find the connected component of that it suffices to take a

logarithm. We will discuss this issue further in the following section.

5. Applications

5.1 T-duality at c = 1

In this subsection we discuss how our results can be applied to check T-duality of the

c = 1 matrix model. As we have seen, in the Euclidean (finite-temperature) MQM, the

momentum and winding modes with respect to the time direction are independently de-

fined. The former arise from macroscopic loops defined in terms of fermion bilinears, while

the latter are Wilson-Polyakov loops in the thermal direction, which project the theory

onto nonsinglet sectors. From the continuum description we expect that there should be

T-duality between these two sets of observables. Indeed, in ref. [16] it has been formally

argued that, like the momentum-perturbed matrix model, the winding-perturbed MQM

also corresponds to the τ -function of a Toda hierarchy. To understand T-duality better,

one would like to compare explicit correlation functions computed from the momentum

and winding sides.

An attempt to directly check T-duality was made by Maldacena in [19], where the

following two quantities were compared: (i) the two-point function of unit-momentum

tachyons, after T-duality, and (ii) the partition function of MQM in the adjoint sector.

From eq. (3.11) we see that (i) is equal to:

〈T−RTR〉 =

∣

∣

∣

∣

∣

Γ
(

1
2 − iµR + R

2

)

Γ
(

1
2 − iµR − R

2

)

∣

∣

∣

∣

∣

(5.1)
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However, at this point we recall that leg-pole factors of Γ(−|q|) were dropped after eq. (3.1).

Restoring them and taking the large-µ asymptotics of this correlator, we find:8

〈T−RTR〉 =
(

Γ(−R)
)2

(µR)R
(

1 +
1

24

(

R − 1

R

)

µ−2 + O
(

µ−4
)

)

(5.2)

On the other hand, (ii) is obtained by solving MQM in the adjoint sector. In the large N

limit, Maldacena obtained the leading (tree level) contribution to the partition function in

this sector as:

Zadj

Zsing
= 〈Wadj〉 =

1

4 sin2 πR
µR =

1

4π2

(

Γ(R + 1)Γ(−R)
)2

µR (5.3)

The power of µ agrees with that in the leading term of eq. (5.2). The remaining discrepancy

can be assigned to the normalisation of the fundamental Wilson-Polyakov loop (or equiv-

alently to the normalisation of the original momentum modes), and we see that eqs. (5.3)

and (5.2) agree to leading order if we change the normalisation of this loop variable to:

WN → 1

2π

R
R
2

Γ(R + 1)
WN (5.4)

This is a relatively simple change of normalisation,9 and appears to specify the basis in

which T-duality holds in MQM.

It is not entirely surprising that one needs to change normalisation of the matrix model

observables in order to implement T-duality. Indeed, this duality is most manifest in the

worldsheet or Liouville approach, in which the momentum and winding vertex operators

come with a natural normalisation and are related to each other by the simple change

(XL,XR) → (XL,−XR). On the matrix model side, momentum operators in the MQM

are related to the corresponding Liouville operators by a change of normalisation, eq. (2.4).

So one should expect that winding operators in MQM are also related to Liouville winding

operators by a change of normalisation.

This is not to say we understand the nature of these normalisation factors in general. In

fact, as stressed in ref. [19], we need more examples in order to check the consistency of this

picture. As an example, if one could compute the genus-1 correction to the adjoint sector

partition function, this could be compared with the genus-1 term in eq. (5.2). Similarly,

if one could compute the leading term for those higher representations that correspond to

2n-point functions of the winding tachyon, then one could match this with the asymptotics

of the latter, which can be read off from our results in section 4.5.

There will also be representations corresponding to the correlators of multiply wound

tachyons TnR. These correlators can be found by T-dualising the relevant momentum

correlators, for example the two-point functions are found by T-dualising eq. (3.8), leading

to:

〈T−nRTnR〉 =
(

Γ(−nR)
)2

∣

∣

∣

∣

∣

n
∑

r=1

Γ(1
2 − iµR + (r − 1

2)R)

Γ(1
2 − iµR + (r − n − 1

2)R)

∣

∣

∣

∣

∣

(5.5)

8The factor RR was not written in ref. [19].
9Notice that the normalisation factor becomes trivial at the special radius R = 1.
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= n(µR)nR
(

Γ(−nR)
)2

(

1 − nR(nR − 1)
(

(n2 − 1)R2 − nR − 1
)

24R2
µ−2 + O

(

µ−4
)

)

In the matrix model, this should correspond to the fundamental Wilson-Polyakov loop

with a contour that winds n times over the time direction. In principle we are allowed

an independent choice of normalisation for each winding number. In fact the momentum

and winding modes have corresponding freedoms in normalisation, and the only thing

relevant for T-duality is the relative normalisation between them. So when we consider

the nonsinglet sector related to multiply wound loops, and the corresponding tachyons of

n units of momentum, the leading-order comparison will be used to fix the normalisation

and the loop corrections will constitute a genuine check of T-duality.

To summarise, we have not been able to address the problem of T-duality but only

set up one side of it. Namely, we have exhibited the all-orders finite-radius correlators

computed from the momentum side, after performing a T-duality transformation. This

constitutes a prediction to be checked once it is properly understood how to perform nons-

inglet computations for different representations and to higher orders in string perturbation

theory.

There is one more intriguing point that we would like to mention. The correlators

we have computed take very special values at the selfdual radius R = 1, the point of

enhanced SU(2) symmetry. In particular, all loop corrections to the two-point function of

unit momentum tachyons vanish, as can be seen from eq. (3.11). Thus the tree level answer

is exact.10 By T-duality the same property should hold for the two-point function of unit

winding modes. It is plausible that one could extract this simple property just from the

structure of the nonsinglet Hamiltonian — in this case it is the adjoint Hamiltonian that was

studied in ref. [19], specialised to R = 1. Similarly, at R = 1 the other two-point functions

have perturbation series that terminate at a finite number of loops, as one can easily check

from eq. (5.5). So, for consistency this must also be a property of the antisymmetric-

antisymmetric representations referred to above. It may be simpler to derive this kind of

general result in the nonsinglet sector than to actually compute coefficients with precision.

5.2 Vortex condensate and black holes

It is believed that the Euclidean 2D black hole background, defined in the continuum by

an SL(2, R/U(1) CFT, is equivalent to the c = 1 matrix model perturbed by fundamental

Wilson-Polyakov loops:

SMQM → SMQM + λWN + λ̄WN̄ (5.6)

The basis for this belief is the FZZ conjecture [15], which relates the black hole background

to Sine-Liouville theory.11 Via the equivalence in eq. (2.8), the latter is the same as the

perturbed background above.

10This was already known long ago, for example as the puncture equation in the Kontsevich-Penner

model [22].
11This conjecture has been proved by Hori and Kapustin [33] in the N = 2 supersymmetric case. As

Maldacena has argued [19], suitably orbifolding both sides of their argument leads to a proof for the bosonic

case.
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To be precise, the FZZ conjecture is not really an either/or statement wherein one uses

either the black hole background or the Sine-Liouville perturbation. It has increasingly

become clear that the backgrounds that one might call “black hole” or “Sine-Liouville” are

the same, and both perturbations are turned on simultaneously. Depending on the value of

the worldsheet coupling, one or the other of these perturbations is more dominant, but for

example the exact correlation functions have poles corresponding to both perturbations.12

In the present work we will not focus on these details, but will be content to treat the black

hole story as a motivation to understand the vortex condensate:

〈eλWN+λ̄WN̄ 〉
∣

∣

∣

MQM
(5.7)

One way to compute this condensate would be to sum over an infinite set of nonsinglet

sectors in the MQM with some definite weights. However, as we have seen, the technology

to do this seems rather limited at present. An alternative is to assume T-duality to compute

the correlator:

〈eλ TR+λ̄ T−R〉 =
∞

∑

n=0

∞
∑

m=0

λn

n!

λ̄m

m!
〈(TR)n(T−R)m〉 =

∞
∑

n=0

|λ|2n

(n!)2
〈(TRT−R)n〉 (5.8)

where the last equality follows from conservation of winding number.

Now from the computation in appendix D, we have the following result after T-duality:

〈(T−RTR)n〉 =

∣

∣

∣

∣

∣

∣

∑

{ki}

C({ki})2
n

∏

i=1

Γ
(

1
2 − iµR − (i + ki − 1

2)R
)

Γ
(

1
2 − iµR − (i − 1

2)R
)

∣

∣

∣

∣

∣

∣

(5.9)

where {ki} are strictly ordered partitions of n(n+1)/2, and C({ki}) are the combinatorial

coefficients given in eq. (D.9).

The above correlators contain both connected and disconnected contributions. We can

now pass to the generating function:

〈eλ TR+λ̄ T−R〉 =

∞
∑

n=0

|λ|2n

(n!)2

∣

∣

∣

∣

∣

∣

∑

{ki}

C({ki})2
n

∏

i=1

Γ
(

1
2 − iµR − (i + ki − 1

2)R
)

Γ
(

1
2 − iµR − (i − 1

2 )R
)

∣

∣

∣

∣

∣

∣

(5.10)

This is the partition function in the presence of a vortex condensate, and its logarithm is

the free energy of the perturbed theory. So one does not need at any point to compute

individual connected correlators.

The above expression is completely explicit and does not require integrating any equa-

tion or developing a recursion relation. We expect it will be useful to to extract physical

quantities of interest related to the Euclidean 2d black hole. This is beyond the scope

of the present work, however, and we hope to return to a more detailed analysis of this

formula in the future.

Again it is worth pointing out that at the selfdual radius R = 1 the vortex condensate

is known exactly, though deriving it from the above expression would not be the easiest

12See for example ref. [6]. We are grateful to Ari Pakman for explaining this to us.
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way. The puncture equation of ref. [22] simply tells us that:

〈eλ TR+λ̄ T−R〉|R=1 = eµλλ̄ (5.11)

and one can check easily that this agrees with the cases in eq. (4.22) specialised to R = 1.

The significance for the Euclidean 2d black hole of this simple result has not, to our

knowledge, been explored. While it is true that the black hole CFT corresponds to a radius

R = 3
2 , it is believed [16] to have a marginal deformation to other radii at least in the range

1 < R < 2. So the physical consequences of the simple formula above at R = 1 would be

worth understanding better.

6. Conclusions

In this work we have examined the familiar c = 1 bosonic noncritical string theory, or rather

its Euclidean (finite temperature) version, from the perspective of correlation functions.

Both old and new techniques were used to develop simple, elegant and explicit formulae

as functions of two variables: the cosmological constant µ and the compactification radius

or inverse temperature R. The key results are summarised in eqs. (3.8), (3.16), (4.19).

In addition we have shown that the Normal Matrix Model is a powerful computational

tool.

An obvious extension of this work would be to the case of noncritical type 0 strings [34,

35]. In ref. [36], explicit expressions are obtained for the partition functions of type 0A

and 0B strings in the presence of fluxes. These expressions are richer than the corre-

sponding ones for the bosonic noncritical string, both because of the flux dependence and

because they are nonperturbative in µ. Our work should generalise quite straightforwardly,

particularly to the Euclidean type 0B case, and the correlators so obtained will contain

nonperturbative information about the theory.

A detailed investigation into the physical questions that motivated the present exercise,

namely a better understanding of the 2d black hole background as well as of T-duality in

the matrix model, is left for subsequent work. We also note that the physical origin of the

Normal Matrix Model has not yet been understood. As it is clearly a correct and useful

description of the c = 1 string, and moreover makes sense only in the Euclidean context,

it would be worth trying to put it on a similar footing as MQM in terms of the dynamics

of some appropriate (Euclidean) D-branes.
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A. Computation of two-point functions in the NMM

Here we present some of the details of how to compute two-point functions in the Normal

Matrix Model. To start with, for the partition function we have

ZN=2
NMM(t = 0) =

∫

d2z1d
2z2 |z1 − z2|2

×e−ν((z1z̄1)R+(z2z̄2)R)+(Rν−2+ R−1

2
)( log z1z̄1+log z2z̄2) (A.1)

As before, we change variables zi =
√

mi e
iθi , d2zi → dmi dθi and we get

ZN=2
NMM(t = 0) =

∫ ∞

0
dm1dm2

∫ 2π

0
dθ1dθ2

(

m1 + m2 −
√

m1m2(e
iθ12 + e−iθ12)

)

×e−ν(mR
1

+mR
2

)+(Rν−2+ R−1

2
)( log m1+log m2)

= 4π2

∫ ∞

0
dm1dm2 (m1 + m2)(m1m2)

(Rν−2+ R−1

2
)e−ν(mR

1
+mR

2 )

= 8π2

R2 ν−(ν+ 1

2
− 1

2R )Γ
(

ν + 1
2 − 1

2R

)

× ν
−

“

ν+
1
2−

3
2R

”

Γ
(

ν + 1
2 − 3

2R

)

, (A.2)

where θ12 ≡ θ1 − θ2. In a similar manner we have

∂−2∂2ZN=2
NMM(t = 0) =

∫

d2z1d
2z2 |z1 − z2|2(z2

1 + z2
2)(z̄

2
1 + z̄2

2)

×e−ν((z1z̄1)R+(z2z̄2)R)+(Rν−2+ R−1

2
)( log z1z̄1+ log z2z̄2)

=

∫ ∞

0
dm1dm2

∫ 2π

0
dθ1dθ2

(

m1 + m2 −
√

m1m2(e
iθ12 + e−iθ12)

)

×
(

m2
1 + m2

2 + m1m2e
2iθ12 + m1m2e

−2iθ12

)

e−ν(mR
1

+mR
2

)+(Rν−2+ R−1

2
)( log m1+ log m2)

= 4π2

∫ ∞

0
dm1dm2 (m1 + m2)(m

2
1 + m2

2)(m1m2)
(Rν−2+ R−1

2
)e−ν(mR

1
+mR

2 )

Evaluating the integrals on m1,m2 we get

∂−2∂2ZN=2
NMM(t = 0) = 8π2

R2 ν−(ν+ 1

2
+ 3

2R )Γ
(

ν + 1
2 + 3

2R

)

× ν−(ν+ 1

2
− 3

2R)Γ
(

ν + 1
2 − 3

2R

)

+ 8π2

R2 ν−(ν+ 1

2
+ 1

2R )Γ
(

ν + 1
2 + 1

2R

)

× ν−(ν+ 1

2
− 1

2R)Γ
(

ν + 1
2 − 1

2R

)

(A.3)

From eq. (A.2) and eq. (A.3) we have

〈T−2/RT2/R〉N=2
NMM = ν−2/R

(

Γ
(

ν + 1
2 + 3

2R

)

Γ
(

ν + 1
2 − 1

2R

) +
Γ

(

ν + 1
2 + 1

2R

)

Γ
(

ν + 1
2 − 3

2R

)

)

(A.4)

As before, to get the correct two point function we have to analytically continue ν = −iµ

and take the modulus of the above expression. This gives:

〈T−2/RT2/R〉N=2
NMM = µ−2/R

∣

∣

∣

∣

∣

Γ
(

1
2 − iµ + 3

2R

)

Γ
(

1
2 − iµ − 1

2R

) +
Γ

(

1
2 − iµ + 1

2R

)

Γ
(

1
2 − iµ − 3

2R

)

∣

∣

∣

∣

∣

(A.5)
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B. Evaluation of a summation in the MQM four-point function

In order to show the equivalence between eqs. (3.15) and (3.16) we need to prove the

following identity:

∞
∑

n=0

(−1)n

n!

(

Γ(− 1
R + n)

Γ(− 1
R)

)2
Γ

(

1
2 − iµ + 3

2R − n
)

Γ
(

1
2 − iµ − 1

2R

) =

(

Γ
(

1
2 − iµ + 1

2R

)

Γ
(

1
2 − iµ − 1

2R

)

)2

(B.1)

Let us start with the expression:

E =
∞
∑

n=0

(−1)n

n!

(

Γ(− 1
R + n)

Γ(− 1
R)

)2

Γ
(

1
2 − iµ + 3

2R − n
)

(B.2)

Using the integral representation of the Γ function we write this as:

E =
1

(

Γ(− 1
R )

)2

∞
∑

n=0

(−1)n

n!

∫

d3t (t1t2)
− 1

R
+n−1t

−n+ 1

2
−iµ+ 3

2R
−1

3 e−t1−t2−t3 (B.3)

The sum over n can now be performed immediately and we have:

E =
1

(

Γ(− 1
R)

)2

∫

d3t e
−

t1t2
t3 (t1t2)

− 1

R
−1 t

1

2
−iµ+ 3

2R
−1

3 e−t1−t2−t3

=
1

(

Γ(− 1
R)

)2

∫

d3t e
−t1(1+

t2
t3

)
(t1t2)

− 1

R
−1 t

1

2
−iµ+ 3

2R
−1

3 e−t2−t3 (B.4)

Using the change of variables t1 → t1(1 + t2
t3

) and performing the integral on t1 we get:

E =
1

Γ(− 1
R)

∫

d2t t
− 1

R
−1

2 t
1

2
−iµ+ 3

2R
−1

3 t
− 1

R

3 (t2 + t3)
1

R e−t2−t3 (B.5)

We next introduce a parameter α which allows us to write the above equation as:

E =
1

Γ(− 1
R )

(

− ∂

∂α

)
1

R
∫

d2t t
− 1

R
−1

2 t
1

2
−iµ+ 1

2R
−1

3 e−α(t2+t3)

∣

∣

∣

∣

α=1

(B.6)

Changing variables ti → αti we have:

E =
1

Γ(− 1
R)

(

− ∂

∂α

)
1

R

α− 1

2
+iµ+ 1

2R

∣

∣

∣

α=1

∫

dt2 t
− 1

R
−1

2 e−t2

∫

dt3 t
1

2
−iµ+ 1

2R
−1

3 e−t3

= Γ(1
2 − iµ + 1

2R )

(

− ∂

∂α

)
1

R

α− 1

2
+iµ+ 1

2R

∣

∣

∣

α=1
(B.7)

Using the relation:
(

− ∂

∂α

)m

αn
∣

∣

∣

α=1
=

Γ(−n + m)

Γ(−n)
(B.8)

we finally have:

E =

(

Γ(1
2 − iµ + 1

2R )
)2

Γ(1
2 − iµ − 1

2R )
(B.9)

Using eq. (B.2) and dividing both sides by Γ(1
2 − iµ − 1

2R) we immediately get eq. (B.1).
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C. Four-point function in NMM

We now briefly describe the calculation of the connected four-point function of unit mo-

mentum modes in the NMM. This is obtained by differentiating the free energy F with

respect to the couplings. We thus have:

〈(T−1/RT1/R)2〉 = ∂2
−1∂

2
1F

= 〈(T−1/RT1/R)2〉disconn − 2〈T−1/RT1/R〉2 (C.1)

where F = lnZNMM. The second term in the above equation can be calculated from the

NMM with N = 2 and is given by:

〈(T−1/RT1/R)2〉disconn = 〈(trZ†)2(trZ)2〉N=2
NMM

= ν−2/R

(

Γ
(

ν + 1
2 + 3

2R

)

Γ
(

ν + 1
2 − 1

2R

) +
Γ

(

ν + 1
2 + 1

2R

)

Γ
(

ν + 1
2 − 3

2R

)

)

The explicit calculation is very similar to the calculation of 〈T−2/RT2/R〉 from the NMM.

The disconnected piece is simply the square of the two-point function listed in eq. (4.4).

Putting everything together the connected four-point function is given by:

〈(T−1/RT1/R)2〉conn
NMM = ν−2/R

[

Γ
(

ν + 1
2 + 3

2R

)

Γ
(

ν + 1
2 − 1

2R

) +
Γ

(

ν + 1
2 + 1

2R

)

Γ
(

ν + 1
2 − 3

2R

)

−2

(

Γ(n + 1
2 + 1

2R )

Γ(n + 1
2 + 1

2R )

)2


 (C.2)

Analytically continuing ν = −iµ and taking the modulus, and then using the definition

of F+ in eq. (3.4), we finally get:

〈(T−1/RT1/R)2〉conn
NMM = (µ)−2/R

∣

∣

∣

∣

F+( 3
2R ,− 1

2R ;µ) − 1
2

(

F+( 1
2R ,− 1

2R ;µ)
)2

∣

∣

∣

∣

(C.3)

D. 2n-point functions in NMM

Here we present the detailed calculation of the 2n-point functions from the NMM. In what

follows we will take the rank of the matrix, N , to be equal to n. We have:

(∂−1∂1)
nZN=n

NMM(t = 0) =

∫ n
∏

i=1

d2zi

n
∏

i<j

|zi − zj |2
(

n
∑

i=1

zi

)n (

n
∑

i=1

z̄i

)n

×e−ν
Pn

r=1
(zr z̄r)R+(Rν−n+ R−1

2
)

Pn
r=1

log zr z̄r (D.1)

We would now like to make the substitution zi =
√

mi e
iθi and perform the θ integrals.

The remaining integrand will then be a function of the mi and we will find that it has

the form
(

∑

{ki}
C({ki})2

∏

i m
ki

i + permutations
)

e−SNMM . Here {ki} are positive integers

corresponding to strictly ordered partitions of n(n + 1)/2, i.e.:

n
∑

i=1

ki = n(n+1)
2 , k1 > k2 > · · · > kn ≥ 0 (D.2)
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The permutations referred to are of the mi. Because the mi are integration variables,

summing over permutations simply amounts to multiplying by a factor of n!. The constant

coefficients have been labelled C({ki})2 in anticipation of the fact that they will turn out

to be squares. After performing the integration over mi and dividing by ZNMM we get the

final answer as a sum of ratios of products of gamma functions, with each term in the sum

corresponding to a strictly ordered partition {ki} of n(n + 1)/2.

We will first show that the coefficients are perfect squares C({ki})2. After that we will

turn to the calculation of the C({ki}). Consider the expression:

U =

(

n
∑

i=1

zi

)n n
∏

j<k

(zj − zk). (D.3)

The full integrand is then UŪ times the exponential factor. Because the action is indepen-

dent of the θ’s, the entire θ-dependence of the integrand is in UŪ . Note that U has only

positive powers of eiθi and Ū has only negative powers. Only the θ-independent terms in

the expansion of UŪ will survive the θ integrals.

It is easy to see that if we expand U , Ū then we get:

U =
∑

{αi}

C({ki})
n

∏

i=1

zki

i + permutations

Ū =
∑

{αi}

C({ki})
n

∏

i=1

z̄ki

i + permutations, (D.4)

with {ki} defined as before. It is now clear that the coefficients of θ-independent terms in

T T̄ must be perfect squares, as the phase of a term in the first expression of eq. (D.4) can

only be cancelled by the complex conjugate term from the second expression, which has

the same coefficient as the first term.

Let us now determine the coefficients C({αi}). First we note the following property of

the positive phase part of the Vandermonde:

n
∏

j<k

(zj − zk) =
∑

P

(−1)P
n

∏

j=1

z
Pj

j , (D.5)

where P is a particular permutation of the n integers (n − 1, n − 2, . . . , 0) and Pj denotes

the jth element of the permutation P.13 The sign for the first permutation is positive

by construction. Any other permutation can be arrived at by a series of interchanges

zi ↔ zj . Each such interchange introduces a minus sign in the Vandermonde. Thus even

permutations have a positive sign, while odd permutations have a negative sign, leading

to eq. (D.5). Expanding the first factor in eq. (D.3) in a multinomial series and using

eq. (D.5) we get:

U =





∑

{βi}

n
∏

i=1

(

n − ∑i−1
j=1 βj

βi

)

zβi

i









∑

P

(−1)P
n

∏

j=1

z
Pj

j





13For example, Pj = n − j when P is the identity permutation.
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=
∑

{βi}

∑

P

(−1)P
n

∏

i=1

(

n − ∑i−1
j=1 βj

βi

)

zβi+Pi

i (D.6)

where {βi} are the unordered partitions of n.

Let us examine the possible values of the exponent ki = βi +Pi in the above. If ki = kj

for some i 6= j then the corresponding coefficient is zero. This can be traced back to the

fact that the expression eq. (D.3) is odd under pairwise interchange of the z’s. Therefore

we can rewrite the above as:

U =
∑

ki 6=kj
P

i ki=n(n+1)/2

∑

P

(−1)P
n

∏

i=1

(

n − ∑i−1
j=1(kj − Pj)

ki − Pi

)

n
∏

i=1

zki

i (D.7)

Because the ki are all distinct, we can limit ourselves to strictly ordered sets satisfying

k1 > k2 > · · · kn. The other orderings are obtained by permuting these ones, or equivalently

by permuting the zi’s. Thus we have:

U =
∑

k1>k2>···>kn
P

i ki=n(n+1)/2

C({ki})
n

∏

i=1

zki

i + (permutations of zi) (D.8)

with

C({ki}) =
∑

P

(−1)P
n

∏

i=1

(

n − ∑i−1
j=1(kj − Pj)

ki − Pi

)

(D.9)

Finally we combine U with Ū and integrate over the angles to get:

(∂−1∂1)
nZN=n

NMM = (2π)n
∫ n

∏

i=1

dmi

∑

{ki}

C({ki})2
n

∏

i=1

mki

i e
Pn

i=1
(−νmR

i +(Rν−n+ R−1

2
) log mi)

+permutations (D.10)

= (2π)nn!
∑

{ki}

C({ki})2
n

∏

i=1

ν−( 1

2
+ν+(ki−n+ 1

2
) 1

R)Γ
(

1
2 + ν + (ki − n + 1

2 ) 1
R

)

Using the expression for the partition function ZNMM from eq. (4.12) for N = n we have:

(∂−1∂1)
nZN=n

NMM

ZN=n
NMM

= ν−n/R
∑

{ki}

C({ki})2
n

∏

i=1

Γ
(

1
2 + ν + (ki − n + 1

2) 1
R

)

Γ
(

1
2 + ν − (i − 1

2) 1
R

) (D.11)

The 2n-point function is given by analytically continuing ν = −iµ, changing to MQM

normalisation using eq. (4.6) (which amounts to removing the power of ν in front), and

finally taking the modulus:

〈(T−1/RT1/R)n〉 =

∣

∣

∣

∣

∣

∣

∑

{ki}

C({ki})2
n

∏

i=1

Γ
(

1
2 − iµ + (ki − n + 1

2) 1
R

)

Γ
(

1
2 − iµ − (i − 1

2) 1
R

)

∣

∣

∣

∣

∣

∣

(D.12)

with C({ki}) given by eq. (D.9).
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